AI如何采用CNN对分布式光纤振动非法入侵行为进行识别

关键词: 光纤振动识别 AI 光纤振动 分类: 知识科普 更新日期: 2024-02-02 02:48:16

AI如何采用CNN对分布式光纤振动非法入侵行为进行识别

看清晰版本,请扫描二维码通过视频号观看

微信头像
技术支持:黄工 13427781756 (微信同号,可扫码
Email: huangqianyuan@glgyzn.com
您是不是对这个产品感兴趣,如果感兴趣的话,可以添加我们黄工的微信具体了解一下。

分布式光纤振动监测系统对防护区域的保护过程是:通过系统监测光缆的振动并实时采集振动信号,然后对振动信号行为进行识别,识别出具有破坏性的行为后,系统进行预警或告警,前往现场处置破坏行动。所以对振动信号进行准确识别,是目前市场的一个强需求。

对于振动信号的识别方法有很多,有通过对振动信号幅值的强弱,频率,持续时间进行识别的,也有通过支持向量机SVM进行的,还有通过卷积神经网络模型(简称CNN)进行AI识别的。

在当前一切都想往AI靠的大环境下,CNN神经网络模型倍受欢迎。那么如何通过CNN对振动信号进行识别呢?

我们在用CNN做识别前,需要先搭建自己的CNN模型。我们首先需要对振动点进行特征采样,例如安静环境下的样本,有挖掘机挖掘等破坏行为时候的样本,采样时长我们设置为3秒,这样我们就可以获取到一系列的3秒钟时长的不同行为下的振动样本数据。

我们把这3秒钟的振动数据读取,其实就是一个一维的数组,我们把该数据可视化到图形上,可以得到一系列的波形图。

在神经网络中,我们一般都是输入二维的tensor矩阵,所以我们可以把3秒钟的一维数组,假设10000个数,可以转换成一个100*100的二维数组。

二维卷积(nn.Conv2d)是最常用的卷积,我们可以多次二维卷积,然后最大池化(MaxPool2d)等操作,搭建自己的模型。

剩余的即是训练数据,及修改参数调整模型准确度的工作了。

当数据样本足够多,理论上模型更精准。这样当现场一个3S的振动数据数据到模型库后,立即可以识别是否具有破坏性。

更多博客视频内容

1064nm光电探测器用于气象激光雷达
[产品动态] 2024-05-11 06:59:01
1064nm的光电探测器,用于气溶胶,大气激光雷达等应用,这款探测器采用硅材料的APD光电二极管,在1064nm处进行了增强,依然拥有0.36V/W的响应度。使得对1064nm的光反应及其灵敏。
相干衰落抑制型DAS全光纤解调模块 小尺寸DAS系统
[产品动态] 2025-12-23 10:25:32
内置相位解调算法,实现全光纤解调与相干衰落抑制,可直接输出幅度相位解调数据,其中相位数据可直接作为振动信号使用,无需二次解缠绕;亦可输出原始采样数据供用户自定义解调。该设计降低了系统对 CPU 算力的依赖,简化开发流程,实现“数据读取即可用,相位即振动”。
ARM嵌入式小型化DAS一体机AI可扩展
[产品动态] 2025-05-21 04:07:13
EM-DAS是桂林光翼智能推出的嵌入式小型化DAS系统。系统平台基于ARM,有着体积小,功耗低, 监测距离长,运算速度快,AI可扩展等特点。
拉曼光纤放大器在光纤传感系统DAS中实测
[产品动态] 2024-05-17 00:47:14
拉曼光纤放大器对1550nm信号进行放大,能明显增强信号的信噪比,以便实现更远距离(60km)的探测。

联系电话 13427781756